(512) 491-9500   info@novacentrix.com

Follow Us                 

NovaCentrix Blog

Kurt A. Schroder, CTO, NovaCentrix

Joining NovaCentrix in 2000, Dr. Kurt Schroder is Chief Technology Officer. Kurt is the inventor of the photonic curing process which is incorporated within all PulseForge tools as well as numerous supporting technologies. Kurt has over 25 years’ experience in plasma physics and pulsed power and has worked in industry, government, and academia. He holds 31 US patents and >50 foreign patents in diverse technology areas. Kurt is a two-time recipient of the prestigious R&D100 award which recognizes the best 100 inventions in the US each year. He was named 2012 Inventor of the Year by the Texas State Bar. He is also the inventor of the antivibration technology contained within most hammers sold in the United States, with sales exceeding $2B. Kurt holds an S.B. in Physics from Massachusetts Institute of Technology and a Ph.D. in Physics from the University of Texas at Austin.
Find me on:

Recent Posts

The evolution of photonic curing

Sep 29, 2020 11:00:00 AM / by Kurt A. Schroder, CTO, NovaCentrix posted in Photonic Curing, flexible electronics

1 Comment

Photonic curing is the high temperature processing of thin films using a flashlamp. When this processing is performed on a low temperature substrate, such as plastic or paper, a significantly higher temperature can be attained in the film versus an oven without damaging the substrate. This is due to two effects: 1) thermal processes exponentially progress with increasing temperature and 2 ) thermal damage to a polymer substrate generally takes a finite amount of time. Within a range, the shorter the time, the higher the temperature a material can take without damage. In the case of a polymer or paper
substrate, the ultimate temperature one can reach is right below its gasification temperature. The result is that an intense pulse of light can process a thin absorbing film on a low temperature substrate in only a few hundred microseconds as effectively or better than 10 minutes in an oven. As the substrate generally absorbs less of the light energy from the flashlamp than the targeted film, the film can be selectively printed and only the film is heated. That is, photonic curing is an automatically registering curing process. Consequently, even though photonic curing is very high in power, it is fundamentally a low energy process. Over the past 15 years, photonic curing has progressed far beyond the laboratory sintering of metal traces on plastic and paper and is now extensively used in many processes in the high-volume manufacturing (HVM) of consumer electronics.

Read More